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Abstract

For safe driving, potential accidents must be warned be-
fore an actual accidents happen. We present an on-going
work for a driver warning system using an ego-centric cam-
era such as dashcam. We propose a novel deep learning
model for anticipating ego vehicle involved accident object
that may cause an accident in the future as early and accu-
rately as possible. The proposed method predicts the acci-
dent probability of each object surrounding an ego-vehicle
using hidden states from a future object localization model;
this model uses only motion features such as a bounding
box and its differential motion. The proposed method can
thus reduce effects of visual biases in datasets, and thereby
generalize well to unseen data. The effectiveness of the pro-
posed method was demonstrated on a real vehicle.

1. Introduction

For safe driving, advanced driver assistance systems
(ADASs) based on the anticipation of traffic accidents is
required. However, learning to anticipate accidents is ex-
tremely challenging, because accidents are diverse and typ-
ically occur suddenly. Recent deep- and machine-learning-
based studies have shown that anticipating [1, 2, 3, 4, 5, 6, 7]
accidents with high probability is possible using only a first-
person camera (e.g., dashcam) in a vehicle.

Ego-involved accidents usually occur abruptly and
quickly in close proximity; hence, a quick and urgent re-
sponse is required to avoid them. On the contrary, non-
ego-involved accidents usually occur over larger distances;
therefore, quick attention is required to avoid them. Pre-
venting ego-involved accidents should be a priority for

drivers and agents because they require quicker actions.

Notably, most existing studies [1, 2, 3, 4, 5, 6, 7] con-
centrate only on accident anticipation tasks, which can de-
termine whether traffic accidents will occur in each frame of
the incoming video stream. However, they cannot localize
the object that poses a threat to the ego-vehicle. The acci-
dent risk factor in [3] anticipated not for a specific object but
for object categories (vehicles, pedestrians, and bicycles),
which cannot localize specific risk factor that threatens the
ego-vehicle. To avoid near-future accidents of the ego-
vehicle, accident- involved object anticipation task must lo-
calize the object because avoidance actions are primarily
decided based on the location of the collision-related ob-
ject.

Another important issue is the generalization capabil-
ity. Farhan et al. [7] discussed dataset biases [8] and then
showed that the high AP and TTC in [4, 6] resulted mainly
from visual bias. Therefore, existing methods may not be
generalizable to unseen data. In addition, considering im-
mediate warning or automatic avoidance of impending acci-
dents, the inference of the anticipation model must be pro-
cessed online for the vehicle. Therefore, fast inference and
reduced memory are the main requirements.

To solve the aforementioned limitations (only accident
anticipation task) and disadvantages (lack of generaliza-
tion and slow inference) of the existing methods, this paper
proposes a novel deep-learning-based method with a dash-
cam to anticipate a traffic accident-involved object. The
main contributions of this study are summarized as fol-
lows: (1) We propose a novel deep-learning-based traffic-
accident-involved object anticipation model that predicts
ego-involved accidents. (2) Unlike previous methods, the
proposed model does uses only the concatenation of the



Figure 1. Overview of the proposed traffic accident-involved object anticipation framework.

bounding box information (location and size) and its differ-
ential motion information (velocity) of the detected objects.
In addition, the ego-vehicle motion is not used. (3) We col-
lect new traffic accident data from South Korea (KAD) to
demonstrate the generalization capability of the proposed
model to a dataset that is not introduced in the training pro-
cess.

2. Method

Fig. 1 shows the deep learning framework for the pro-
posed traffic accident-involved object anticipation model. It
comprises three stages: (a) In the first stage, given dash-
cam videos, objects are detected as bounding boxes and
then tracked. (b) In the second stage, the future locations
of the detected and tracked objects are predicted individu-
ally using both the bounding box features and the differen-
tial motion of the bounding boxes. (c) In the third stage,
the agent computes the accident probability of each object
using the averaged hidden states in the trajectory-prediction
stages. An ego-involved accident can thereby be predicted
from the future tracking-related hidden states to the fully
connected layer, outputting the accident probability.

Notably, the proposed architecture is similar to that in
[9], where the object detector, tracker, and predictor for
Future Object Localization (FOL) were used to detect ac-
cidents using performance metrics such as the frame-level
Area Under the Curve (AUC). However, this method only
detects accidents after the accident has occurred and does
not predict accidents in advance because it detects the
anomalies at the current time using several previous data,
even though their algorithms may also find the most anoma-
lous object in the frame.

There are three main differences between the proposed
architecture and the method in [9]. (i) We have added a new
anticipator model after FOL. (ii) We use differential motion
from the detected objects instead of expensive and high-
memory optical flows for the FOL to reduce memory and

computation costs. (iii) We do not use ego-vehicle motion
prediction, because previous numerical studies had shown
minor differences [10], [11].

2.1. Trajectory Prediction

An object must be detected and tracked using appropri-
ate methods to extract its future trajectory-related hidden
states. Any object detectors such Mask R-CNN [8] and any
trackers (e.g. deep SORT [12]) can be used to detect and
track objects in a particular frame of a dashcam video. The
bounding box Xt is composed of four parameters (location
and size of the bounding box). In addition, two bounding
boxes, Xt−1 and Xt, of the tracked object are used to cal-
culate the differential motion Mt at time t. Then, both are
provided to the trajectory prediction model to predict the
future trajectory of the tracked bounding box information
X̂t,t+1, ..., X̂t,t+δ , where δ is the number of predicted fu-
ture frames and X̂t,t+i is the predicted bounding box of the
tracked object at time, (i = 1, 2, ..., δ) at current time.

2.2. accident-involved Object Anticipation

The proposed neural network model has been trained
through supervised learning using both accident and non-
accident videos. Because the model predicts the accident
probability for each object, each object has either a positive
label for an ego-involved accident object or a negative label
for the others.

3. Experiments
3.1. Dataset for Accident-involved Object Anticipa-

tion

To train and evaluate the proposed model, three datasets
were used: (1) The Detection of Traffic Anomaly dataset
(DoTA) [13] from all over the world. This dataset com-
prises 4,000+ videos in various weather and lighting con-
ditions and various types of traffic accidents involving both



# of training video # of test video
(accident) (accident)

DoTA [13] 1,702(851) 738(369)
KAD* - 898 (449)

CCD* [4] - 112 (56)

Dataset

Table 1. Datasets for training and testing

ego-vehicle accidents and other accidents. (2) Similar to the
DoTA, the CCD [4] comprises 1,500 accident videos and
3,000 non-accident videos from BDD100K [14]. (3) The
new Korean Accident Dataset (KAD) is recently collected
for 600+ videos of South Korean traffic environments from
YouTube. This dataset is intended to test the generalization
capability of the proposed model to unseen data in a spe-
cific country, such as South Korea. Testing the model that
had been trained only on the DoTA without additional train-
ing shows a good generalization capability to other unseen
datasets.

To avoid potential capture bias in the datasets, unlike the
training and testing datasets in existing approaches [3, 4],
we created non-accident datasets by extracting non-accident
driving frames from only the non-ego-involved accident
videos; the frames were extracted from the first frame to
the frame just before the anomaly started. For data bal-
ancing, we used the same number of non-accident and
ego- involved accident videos for training (1,702 (851 ac-
cident + 851 non-accident)) and testing (738 (369 accident
+ 369 non-accident)). Because the KAD consists of only
ego-involved accident videos, during testing, we used 449
non-accident videos from BDD100K [15] and 449 accident
videos from the KAD. In the test with CCD, we used a com-
bination of 56 ego-involved accident videos and 56 non-
accident videos that were randomly selected from the 486
non-accident videos in CCD [4]. Table I summarizes the
datasets. All the video frames were extracted at 10 frames
per second.

3.2. Implementation

The proposed accident-involved object anticipation
model was trained using the Adam optimizer and AdaLEA
[3] as a loss function for 100 training epochs, with a learn-
ing rate of 0.0001. A batch size of one was used be-
cause each tracked object has a different number of tracked
frames. To select the best accident anticipation model dur-
ing training, the harmonic mean between the AP and ATTC
for the test data (DoTA) was used, because the two metrics
are equally important performance measures. An NVIDIA
RTX 3090 GPU and PyTorch were used for computation on
Ubuntu 18.04. The inference time from object detection to
the final accident anticipation was 84 ms (mostly consisting
of the object detection time: 63.9 ms) for ten tracked ob-
jects. Ten objects surrounding an ego-vehicle is sufficiently

Accident object- Accident
involved anticipation anticipation

Architecture mAP (%) ATTC (sec) mAP (%) ATTC (sec)
Ours 82.18 0.969 90.57 1.114

DSA-RNN 71.62 1.232 78.03 2.535

Table 2. Comparison between architectures

representative of urban driving scenarios; thus, it can run in
real time because the provided video stream has 10 frames
per second.

3.3. Evaluation Metric

The proposed accident-involved object anticipation
model predicts the probability (pt in the range of 0–1) of
a future accident in each frame for each object. The time-
to-collision (TTC) is defined by the difference between the
time of the accident and the time judged when the accident
will occur. The TTC is obtained only for true positive (TP)
data. If pt is greater than a certain threshold, then an acci-
dent may occur after the predicted TTC; otherwise, an acci-
dent may not occur. To evaluate the performance of the bi-
nary classification problem, we used the average precision
(AP). In addition, mAP is the mean of the AP for multiple
object categories (vehicles, pedestrians, bicycles, etc.).

4. Results
The proposed approach for accident-involved object an-

ticipation can also be applied to accident anticipation tasks
in which the accident of an entire scene (a video clip) is an-
ticipated, as in [1]. In the accident anticipation task, if the
probability of any one object is larger than a preset thresh-
old value, the video clip is judged as an accident.

Table II compares the two types of anticipation, in which
the accident anticipation task showed both higher mAP and
ATTC than the other. This is because accident anticipa-
tion is judged when there is any one object whose accident
probability exceeds the preset threshold among the total de-
tected objects, even though this object is not a true collid-
ing object, whereas accident-involved object anticipation is
judged when only a true colliding object whose accident
probability exceeds the preset threshold. In other words,
accident anticipation is determined by a greater number of
true-positive counts. Table II also shows a comparison be-
tween the existing approach DSA-RNN and the proposed
method, which shows significantly improved mAP but de-
graded ATTC because mAP and ATTC have a trad-off rela-
tionship.

Table III lists the generalization capabilities of the
pro- posed method that was trained and tested on the
DoTA dataset. The test results using KAD with the pro-
posed method trained on DoTA showed slightly lower AP
(73.56%) than the DoTA test, but the ATTC increased to



Dataset AP (%) ATTC (s)
DoTA [10] 82.18 0.969

KAD* 73.56 1.229
CCD* [4] 64.41 1.068

Table 3. Generalization capability

1.229 s. In the case of CCD, the AP was 64.41% with an
ATTC of 1.068 s. In general, object detection and track-
ing are affected by the video (image) quality. The number
of detected and tracked objects in low-quality images was
smaller than that in relatively higher-quality images [15].
The performance difference among the datasets in Table III
enforces this fact because the video quality (in terms of bi-
trate) is different: KAD (3989 kbps), CCD (916 kbps) and
DoTA (3903 kbps). Therefore, a lower bit rate in the CCD
may result in a lower performance.

5. Discussion
There are two typical failure cases: (1) low accident

probability for a positive (accident-involved) object (worst
case) and (2) high accident probability for a negative (non-
accident-involved) object (false alarm). The reason for the
worst-case (1) is that the positive object (with a high ac-
cident probability) was not detected instantaneously close
to the time of the accident. Therefore, the probability of
an accident decreases to zero. In contrast, the reason for
false alarm case (2) is that, when the negative object closely
crosses the front of the ego-vehicle or passes the side of
the ego-vehicle at a close range, the training dataset states
that these should be treated as accidents. However, in the
real test data, there were no accidents (collisions) because
the drivers may have performed collision avoidance actions
(near-miss case). However, this false alarm may be helpful
in careful driving. Because the proposed accident-involved
object anticipation model does not consider the driver’s ac-
tion as an input and the actual collision cases are labeled as
positive, these types of false alarms may not be predicted,
which is a subject for future research.

Figure 2 shows a visual warning display when a warning
threshold is over a prescribed value. For quicker warning,
a sound warning (e.g. left, center, right) may also be is-
sued independently without visual warning. We are now de-
veloping on-vehicle implementation by using NVIDIA NX
module and are demonstrating on any real roads.

6. Conclusion and Future Work
This study proposes an ego-involved accident object an-

ticipation method. Experimental results with actual datasets
showed good performance, even without additional training
for the unseen data, demonstrating the generalizability of
the proposed approach. Future works will investigate an-

Figure 2. Visual warning in display.

ticipation of non-ego-vehicle-involved accidents as the pro-
posed trajectory prediction and accident anticipation model
processes the tracked objects one by one rather than all to-
gether, which may require more memory and processing
time as well as a more complicated anticipation algorithm.
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